1,713 research outputs found

    Mass and Angular Momentum Transfer in the Massive Algol Binary RY Persei

    Full text link
    We present an investigation of H-alpha emission line variations observed in the massive Algol binary, RY Per. We give new radial velocity data for the secondary based upon our optical spectra and for the primary based upon high dispersion UV spectra. We present revised orbital elements and an estimate of the primary's projected rotational velocity (which indicates that the primary is rotating 7 times faster than synchronous). We use a Doppler tomography algorithm to reconstruct the individual primary and secondary spectra in the region of H-alpha, and we subtract the latter from each of our observations to obtain profiles of the primary and its disk alone. Our H-alpha observations of RY Per show that the mass gaining primary is surrounded by a persistent but time variable accretion disk. The profile that is observed outside-of-eclipse has weak, double-peaked emission flanking a deep central absorption, and we find that these properties can be reproduced by a disk model that includes the absorption of photospheric light by the band of the disk seen in projection against the face of the star. We developed a new method to reconstruct the disk surface density distribution from the ensemble of H-alpha profiles observed around the orbit, and this method accounts for the effects of disk occultation by the stellar components, the obscuration of the primary by the disk, and flux contributions from optically thick disk elements. The resulting surface density distribution is elongated along the axis joining the stars, in the same way as seen in hydrodynamical simulations of gas flows that strike the mass gainer near trailing edge of the star. This type of gas stream configuration is optimal for the transfer of angular momentum, and we show that rapid rotation is found in other Algols that have passed through a similar stage.Comment: 39 pages, 12 figures, ApJ in press, 2004 June 20 issu

    Fracking in the UK press: threat dynamics in an unfolding debate

    Get PDF
    Shale gas is a novel source of fossil fuel which is extracted by induced hydraulic fracturing, or “fracking”. This article examines the socio-political dimension of fracking as manifested in the UK press at three key temporal points in the debate on the practice. Three newspaper corpora were analysed qualitatively using Thematic Analysis and Social Representations Theory. Three overarching themes are discussed: “April–May 2011: From Optimism to Scepticism”; “November 2011: (De-)Constructing and Re-Constructing Risk and Danger”; “April 2012: Consolidating Social Representations of Fracking”. In this article, we examine the emergence of and inter-relations between competing social representations, discuss the dynamics of threat positioning and show how threat can be re-construed in order to serve particular socio-political ends in the debate on fracking

    How do nutrient conditions and species identity influence the impact of mesograzers in eelgrass-epiphyte systems?

    Get PDF
    Coastal eutrophication is thought to cause excessive growth of epiphytes in eelgrass beds, threatening the health and survival of these ecologically and economically valuable ecosystems worldwide. Mesograzers, small crustacean and gastropod grazers, have the potential to prevent seagrass loss by grazing preferentially and efficiently on epiphytes. We tested the impact of three mesograzers on epiphyte biomass and eelgrass productivity under threefold enriched nutrient concentrations in experimental indoor mesocosm systems under summer conditions. We compared the results with earlier identical experiments that were performed under ambient nutrient supply. The isopod Idotea baltica, the periwinkle Littorina littorea, and the small gastropod Rissoa membranacea significantly reduced epiphyte load under high nutrient supply with Rissoa being the most efficient grazer, but only high densities of Littorina and Rissoa had a significant positive effect on eelgrass productivity. Although all mesograzers increased epiphyte ingestion with higher nutrient load, most likely as a functional response to the quantitatively and qualitatively better food supply, the promotion of eelgrass growth by Idotea and Rissoa was diminished compared to the study performed under ambient nutrient supply. Littorina maintained the level of its positive impact on eelgrass productivity regardless of nutrient concentrations

    Climate stories: Why do climate scientists and sceptical voices participate in the climate debate?

    Get PDF
    Public perceptions of the climate debate predominantly frame the key actors as climate scientists versus sceptical voices; however, it is unclear why climate scientists and sceptical voices choose to participate in this antagonistic and polarised public battle. A narrative interview approach is used to better understand the underlying rationales behind 22 climate scientists’ and sceptical voices’ engagement in the climate debate, potential commonalities, as well as each actor’s ability to be critically self-reflexive. Several overlapping rationales are identified including a sense of duty to publicly engage, agreement that complete certainty about the complex assemblage of climate change is unattainable and that political factors are central to the climate debate. We argue that a focus on potential overlaps in perceptions and rationales as well as the ability to be critically self-reflexive may encourage constructive discussion among actors previously engaged in purposefully antagonistic exchange on climate change

    A review of physical supply and EROI of fossil fuels in China

    Get PDF
    This paper reviews China’s future fossil fuel supply from the perspectives of physical output and net energy output. Comprehensive analyses of physical output of fossil fuels suggest that China’s total oil production will likely reach its peak, at about 230 Mt/year (or 9.6 EJ/year), in 2018; its total gas production will peak at around 350 Bcm/year (or 13.6 EJ/year) in 2040, while coal production will peak at about 4400 Mt/year (or 91.9 EJ/year) around 2020 or so. In terms of the forecast production of these fuels, there are significant differences among current studies. These differences can be mainly explained by different ultimately recoverable resources assumptions, the nature of the models used, and differences in the historical production data. Due to the future constraints on fossil fuels production, a large gap is projected to grow between domestic supply and demand, which will need to be met by increasing imports. Net energy analyses show that both coal and oil and gas production show a steady declining trend of EROI (energy return on investment) due to the depletion of shallow-buried coal resources and conventional oil and gas resources, which is generally consistent with the approaching peaks of physical production of fossil fuels. The peaks of fossil fuels production, coupled with the decline in EROI ratios, are likely to challenge the sustainable development of Chinese society unless new abundant energy resources with high EROI values can be found

    Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.

    Get PDF
    A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease

    Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity

    Get PDF
    Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria

    Comparative LCA technology improvement opportunities for a 1.5 MW wind turbine in the context of an offshore wind farm

    Get PDF
    Wind energy is playing an increasingly important role in the development of cleaner and more efficient energy technologies leading to projections in reliability and performance of future wind turbine designs. This paper presents life cycle assessment (LCA) results of design variations for a 1.5 MW wind turbine due to the potential for advances in technology to improve the performance of a 1.5 MW wind turbine. Five LCAs have been conducted for design variants of a 1.5 MW wind turbine. The objective is to evaluate potential environmental impacts per kilowatt hour of electricity generated for a 114 MW onshore wind farm. Results for the baseline turbine show that higher contributions to impacts were obtained in the categories Ozone Depletion Potential, Marine Aquatic Eco-toxicity Potential, Human Toxicity Potential and Terrestrial Eco-toxicity Potential compared to Technology Improvement Opportunities (TIOs) 1 to 4. Compared to the baseline turbine, TIO 1 showed increased impact contributions to Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential and Photochemical Ozone Creation Potential, and TIO 2 showed an increase in contributions to Abiotic Depletion Potential, Acidification Potential and Global Warming Potential. Additionally, lower contributions to all the environmental categories were observed for TIO 3 while increased contributions towards Abiotic Depletion Potential and Global Warming Potential were noted for TIO 4. A comparative LCA study of wind turbine design variations for a particular power rating has not been explored in the literature. This study presents new insight into the environmental implications related with projected wind turbine design advancements

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag
    corecore